生活中有许多数据,那数据分析是做什么的呢?面对浩繁数据的时候,仅仅依靠人类的大脑和双手无法从这些庞大的数据中获得宝贵的信息。即便可以,如果没有任何科学依据。也不能从中找出有效信息。因此,融合了统计技术和IT技术的“数据挖掘”便应运而生。 起初,数据挖掘紧跟“One to One”或“CRM(Customer RelationshipManagement)”的潮流,主要用于分析顾客行为、开发新客户、预测新产品和库存管理等,尤其被期待能够应用于市场营销领域。因此,逐渐出现了把顾客数据和poS数据存储到数据库(Data Warehouse) (下图)的方法:
通过搭配使用数据库(Data warechouse)和数据挖掘,相关人员从市场营销领域获得了许多有效信息、知识、假设和课题。近年来,这种数据分析方法还被广泛地应用于财务、质量管理、医疗、科学研究等众多领域。 在进行实际的数据挖掘时,首先应该做什么准备?数据挖掘工具(道具)有S-PLUS、SAS、SPSS等各类软件和专业应用软件。在美国,把数据挖掘工具称为Siftware,大约有两百多种。在这些众多软件中,既包含具有综合性功能的软件。还包含具备强大单一功能的软件。例如,IBM的Intelligence Mining,SAS公司的EnterpriseMiner,SPSS公司的Clementine,数理系统股份公司的VMS(Visual Mining Studio).都是具有综合性功能的软件,而SPSS公司的Answer Tree,则是采用决策树预测理论的Siftware。 在简单了解了数据分析是做什么的之后,Excel网简单给初学者说几句重要的话,其实初学者完全没必要掌握复杂的操作,也不需要具备高深的专业知识,更下需花费高额费用。日常使用的Excel就是一款卓越的数据挖掘工具。让我们一起学习Excel吧!根据数据挖掘的目的、数据性质、规模和预算等情况,选择适当的工具完成工作。 |